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ABSTRACT

A generalized Morse index theory is used to study the existence
of travelling wave solutions of a diffusion-reaction system of
equations. The reaction system is assumed to be "close" to one
which admits an attracting manifold of critical points. A scaling
argument is used to see that the equations for travelling waves of
the full system are then close to a system with a normally hyper-
bolic manifold of critical points.

Standard perturbation theorems are already available to study
the behavior of solutions of the "perturbed" system which lie near the
critical manifold in terms of a (derived) system of "slow" equations
on the manifold itself. Here, another such theorem, dealing with
aspects of the system which can be described in terms of isolated
invariant sets, is proved. Specifically, it states that isolated
invariant sets of the slow equations correspond to isolated invariant
sets of the full system, and that the Morse index of the latter set
is an n-fold suspension of that of the former where n is the
number of unstable normal directions.

These theorems are applied to a standard continuous space-
time natural selection-migration model for a diploid organism
when the selective strength is weak. The selection is assumed to
be determined by a single locus at which the number of available
alleles is arbitrary, and the critical manifolds are found in this
case.

The perturbation theorem is applied to a system with only two
alleles in a situation where the existence of a travelling wave for
the slow equation has long been known. The conclusion is that the
full system also admits a corresponding travelling wave. The index
theory is of use because the travelling wave itself is part of an
isolated invariant set.
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SIGNIFICANCE AND EXPLANATION

Population of a given species can be classified in terms

of the "alleles" at one or several chromosome loci. Natural

selection may then give preference to some classes over the

others. In some instances there may be two (or more) classes

that are more "fit" than the classes near them (they are locally

the fittest). However, if the population is distributed in a

symmetric way so that one of these classes dominates in half the

space and the other in the other half, and if "migration" is

allowed, then one or the other class might take over. Thus the

"fitness function" does not tell the complete story in such a

situation.

In the mathematical model studied here the more complete

picture is understood in terms of the travelling wave solutions

of a diffusion-reaction system. The equations have the special

feature that, in the absence of selection terms, they admit a

full "manifold" of (neutrally) stable equilibria. This report

shows how to use (Morse) index methods to study the travelling

waves in the presence of this feature. Crin For
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CRITICAL MANIFOLDS, TRAVELLING WAVES AND AN EXAMPLE

FROM POPULATION GENETICS

C. Conlevy and P. Fife

§ 1. Introduction.

A critical manifold for a system of ordinary differential equations means

a manifold of critical points. The system of equations from population genetics

which is treated here admits such manifolds when no "selection" terms are

present.

General perturbation theorems are available for the study of the equations

with small selection terms added. In § 2 a simple version of such a theorem,

which is particularly adapted to the motivating question of this report, is proven.

The results of this report are applied to prove the existence of travelling

wave solutions of the system of partial differential equations representing a

standard continuous space-time natural selection-migration model for a diploid

organism, when the selective strength is weak. Selection operates at a single

locus with two alleles, so the system has three equations (one for each genotype);

however most of our formalism applies to the multi-allele case. Underdominance,

when the two homozygotes are fitter than the heterozygote, is assumed, since

Lhat is the case when a unique travelling wave front is expected.

The key step in the proof of the result is a scaling which presents the

travelling wave equations as a small perturbation of a system with a critical

manifold. The appropriate limiting problem on this manifold has been well

studied and is known to have a unique solution.

Sponsored by the United States Army under Contract No. DAAG29-
80-C-0041 and National Science Foundation Grant Nos. MCS800-
1816 (Conley) and MCS79-04443 (Fife)..1
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With the aid of the results of § 2, the main existence result is proved

in §4. The proof can be played back to a shooting argument or an "index"

argument. Since the latter has been carried out in [1] the details are

omitted here. However, a fairly detailed outline of the way in which the index

arguments can be used is given even though the simplicity of the example treated

doesn't really warrant it. The point is to set things up for later treatment of

more complicated situations.
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§ 2. Behavior of solutions near a critical manifold.

2. 1 . Critical Manifolds.

A. Definition.

Let

(1) du/dt = U(u)

be a system of differential equations with u in Rn o A critical manifold,

l, for this system means a manifold of critical points (i.e. points at

which U = 0).

The critical manifold is non-degerate t u E th if the matrix

SU/8 u evaluated at u has, in addition to the zero eigenvalues

corresponding to directions in fn, only non-zero eigenvalues.

If these additional eigenvalues have only non-zero real parts, the

manifold is called normally hyperbolic at u; if only negative real parts,

attracting at u.

Though we will not use the fact, it is easy to see that the existence of an

invariant manifold is inherited by the tangent equations:

B. Theorem: Suppose U is C1 ; then to (1) there

corresponds the system of tangent equations:

du/dt - U(u)
(2) dv/dt - (aU/3u)v.

For this system the set of points flh (u, v)I u c rr. and v is

tangent to rn at u ) is a critical manifold with twice the dimension of M.

)i -3-



If M is non-degenerate, hyperbolic or attracting at u 0 then the

same is true of M at points (u O , v) in r.

Proof. Since U I M - 0, if u E M and v is tangent to tn

then U (u) = 0 and (aU/8u)v = 0. Therefore, T" is a critical

manifold. The analogue of a U/a u in the definition is the matrix

( a aU/au

where the * refers to terms irrelevant to the present issue. The eigenvalues of

this matrix are the same as those of 8 U/ a u and so the second statement

of the theorem is true.

C. The existence of critical manifolds for (1) also implies

existence of such for the "projectivized" tangent equation but a precise theorem

requires a more refined hypothesis. Since it is not needed here, it is omitted.

The reason for mentioning the tangent and projectivized tangent equations

is discussed in 2. 3D.

2. 2 A Parametrized Family of Equations.

The perturbation theorem concerns the smooth, one parameter family

of equations

(3) -- U (u, ) U0(u) + eU(ue) d

and in particular the behavior of solutions near a critical manifold which is

assumed to exist when s = 0.

Letting x denote coordinates in the manifold and y complementary

coordinates, the equations can be written as:

-4-
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x=X(X)y + Xq(X, Y) +eX(x,y, e)

(4)

= YJ (X)Y + Yq(X, Y) + eY(x, Y, e)

where X and Y are matrix valued functions of x, and Xq and

Yq are of order at least two in y. These terms come from U0  while

the last come from cU.

Now the critical manifold is non-degenerate at x if and only if Y£ (x)

is non- singular. If this non-degeneracy condition is satisfied for x in

some compact subset, say N, of the critical manifold, then coordinates

can be chosen so that X (x) 0 on N.

Namely, let x = x - X2 (x) Y y. Then, computing modulo

terms of order two in y or one in e, there results:
A.. X y- = Y y = 0. The equations (4) thenx-- x-X Y y.~- 2 Y

assume the form:

- q(X, y) + eX(x, y, P)

(5)
= Y I(x)y + Yq(x, Y) + PY(x, y, e),

with X q and Yq of order at least two in y.

Assume now that the critical manifold is hyperbolic for points x

in a compact set N. Then the y-coordinate can be modified if necessary

so that for x E N, Y, (x) has the form:

Ix (x) 0 x

(6 Y2 f((x

where Z (x) is negative definite and Wf (x) is positive definite.

Let y = (z, w) where the decomposition corresponds to that of Y

and let Z , Wq and Z, W be the matching notation for Yq and

-5-
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Y. Then the equations have the form:

x = (x,y) + eX(xy, e

(7) z= Z2 (x)z + Zq (x, y) + eZ(x, Y, P)

;v = W,(x)w + Wq(Xy) + eW(x, y, a)

The dim (z) will be called the number of stable directions; dim (w) the

number of unstable ones.

Z.3 Cornpact invariant sets near the critical manifold.

A. Theorem: Suppose the critical manifold rn is hyperbolic

for all points in some compact set N. Then there is a neighborhood in

u-space of the interior of N (rel. M) which is independent of e and

such that the distance from invariant sets in this neighborhood to points

in In is of order e.

More specifically, suppose the critical manifold M = (u I u = (x, 0))

of (5) is hyperbolic at points in the compact set N C M. Using the

coordinates of (7), for k> 0 define N(k)- fu= (x, z, w)L

Iz 1, jwj -< k).

Then there are positive constants e0 , k0 and k1  such that:

if e -< 60 and S is an invariant set in N(k,), then S is in

N(sko ).

in fact, If e seo0 k E [ zk 0 , k1 ] and u c N(k), then

whenever Izj = k, z l  < 0 and whenever Iwj = k, Iw 1 0.

-6-



Proof. The last sentence implies the previous one as follows. Assuming

S isin N(k I ), let k be the smallest number such that Sc N(k).

Then (if S Isn't empty) there must be a pointof S atwhich IzJ = k

or jwj k . Now if k were in [sk0 , k] then either IzV < 0

or I w > 0 - whichever is relevant - and it would follow that the

solution leaves N (k) in one or the other time direction. Therefore k

cannot be in [k 0 , klJ. Since k s kI, it must be less than ek 0 .

Thus the last sentence implies the full theorem

Now let e0 and k'1  be positive constants such that the right

hand sides of (7) are defined for s :s and Izj , iwi :s .k

Let cI be aboundfor JZJ and JWJ forall u E N(k'l)

and e :s F0 .

Choose k 0  so that ko (2 + cl) is a lower bound for the quadratic

forms -Z (x) and WI (x) whenever x E N. Let c0  be a

bound for IZqI/yl z  and IWqI/Ilyl z  forall u E N(k t l).

Define k= min (k' 1 , I/c 0 k0 ). Now suppose e _ S 0 ,

k E [sk0 , kl] , u E N(k) and, say, Izj = k. Compute:

(OLz ' (z, z) + (Z, Zq) + s(z,Z) _ -k0 1 (Z+c)IzZj 2 + Izl ZqI +
s zij IZI Since uE N(k) and Izi k, Iwi I k and

fyJ2 2k . Therefore:

(C 2z )* s z I[-kol(ZC~ + kco + F~](:~jZI (2 + )k + 2kc sc,]

Izi [ 2k(-k 0  + kc O ) + c O (-k 0 Ik + E)]

-7-



Now since k E [sk0 , kl] -ko k+ s50. Also, because

k I /cok O , -ko + kc 0 :_ 0. Furthermore at least one of these terms

is negative, so (Z < 0.

If Iwi = k, a similar computation shows that ( wj ) > 0

and the theorem follows.

B. Definition . A non-degenerate isolating block for the differential

equation.

(8) f(v)

means a compact set B described in terms of a finite number of (smooth)

functions LI, ... Lm as B= CvlLi(v) :s 0 for i= I,...,m].

It is also required that if v E 8B, then for one of the defining Li ,

Li(v) = 0 and Li(v) (=V L o f(v)) / 0. If (this) Li(v)

is positive at v, v is called an exit point; if negative, v is an

entrance point. (It is possible to be both an exit and an entrance point. )

Blocks are more generally defined in [ 1] , page 55, lines 4 and 5

C. Theorem: With reference to (5), let Xs (x) - X(x, 0, 0).

Suppose B is a non-degenerate block for the equation

(9) k = Xs (X)

and that tr is hyperbolic at points u = (x, 0) with x c B. Let

k 0 be as in Theorem Z. 3 A where the N of that theorem is replaced

by B.

-8-



Then there exists e > 0 such that if e : el the set

B [u= (x, z,w)IxEB and IzI, jwj _s sk0) is ablockfor (5).

The exit set of this block is the set of points u = (x, y, z) with

x in the exit set of B or Iw I k0

Proof: For the functions defining B, take the Li (i = 1, .... m) defining

B, (but now considered as functions of u = (x, z, w)) together with

Lmr1 = ek 0 - Izj and Lm+Z = ek 0 - 1w I

Now given a boundary point of f at which I z I =  k 0 , the function

L or L+ 2  (resp. ) is that required in the definition. Namely, by

the last sentence of Theorem 2.3 A the derivative on the solution through

the boundary point of the appropriate one of these is not zero.

Given a boundary point of F with both I z I and Iw I / ek0,

the x-coordinate of this point is in the boundary of B. Let L. be

the function such that Li (x) = 0 and dL i (Xs ) (x) / 0.

The derivative of Li on solutions of (5) is given by

dLi(Xq(x, y)+ E X(x, y, e)) = edLi(Xs(x)) + dLi[Xq(x , y) + I(X(x, y

X(x,00)] Nowln B jy 2 222 0, . k0 Since Xq (x, y) is of

order at least two in y and X(x, y, s) - X(x, 0, 0) is of order at

least one in y, the terms in square brackets are of order at least two in

_. Because d Li (Xs (x)) / 0 the derivative of L, on solutions of

(5) is non-zero in a neighborhood of u (x, y, z) provided s is

small enough. Covering the boundary of B with a finite number of such

-9-



neighborhoods and taking el to be the least of the s' s, the result follows.

D. Remarks: The equation (9) of Theorem Z.3 C above

provides (except for the change in time scale) the lowest order approximation

for the behavior of the x-coordinates of solutions of (3) near ri. Of

course these coordinates change at rate (at most) s since tn is a

manifold of rest points of (3) when e = 0.

Definition. The equation x = Xs (x), considered as an equation

on tn, will be called the limit equation on rn (as e - 0).

Theorem 2. 3 C states that any properties of this limit equation which can

be described in terms of isolating blocks(or "local Liapounov functions" like

the Li) can be carried over to (3). In view of the remarks in 2.IB.

and C., the same holds for properties describable in terms of isolating

blocks for the tangent and projectivized tangent equations and their iterates.

There are several such properties: for example, the statement that

(9) admits a compact hyperbolic invariant set in a given conjugacy class

can be expressed in terms of blocks for the tangent and projectivised tangent

equations. Thus, if S C M is such an invariant set of the limit equation,

then for small F , (3) admits a compact hyperbolic invariant set conjugate

to (and within k0 e of) S . More specially, S might be a hyperbolic

critical point or periodic orbit of (9), which then perturbs to an orbit of

the same type for (3) - though of course the dimensions of the stable and

unstable manifolds generally increase.

-10-
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As another example, the usual hypothesis on a compact invariant

manifold that allows a perturbation result 'reserving smoothness of order

r can also be stated in terms of isolating blocks of an iterated tangent

equation. Thus if tn' c tn is a compact invariant Cr - manifold for (9)

which satisfies this hypothesis then for small e, (and assuming enough

smoothness) (3) admits an invariant Cr - manifold homeomorphic to and

near rn

(It is more challenging to try to find a perturbable property not describable

in terms of blocks. )

In a different direction, it is (also) well known that with a sequence

of coordinate transformations, (9) can be replaced by better approximations

for the behavior of the x-coordinates of those solutions in an invariant set S

near I . In fact In itself can be replaced by critical manifolds of the

transformed equations which pass within 0 ( ,n) of S. (In other words,

uniform asymptotic expansions can be given for solutions in S. )

The use of Theorem 2. 3 C in the setting of the Morse index is illustrated

§3.4B . In [3] a more general theorem about isolating neighborhoods for

parametrized families of equations is proved. It can be used in connection with

the Morse index in the same way.
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2. 4 Travelling waves.

A. The travelling wave equation.

The motivating problem of this report concerns the system of travelling

wave equations associated to a partial differential equation of the form:

(10) au/at -2 u/ a 2 + Uo(U) + a U(u, ).

The travelling wave equations are ordinary differential equations derived on

assuming a solution of (10) in the form u(t, ) = u(e - act).

Letting T = - ct, and ' = d/dT and dropping the tilde,

these equations assume the form

(11) -oU = U + Uo0 (U) + o U(u, a).

We are interested in the case where, when a = 0, the equations

for the spatially independent solutions of (10) (i. e. the equations without

the diffusion terms ) admit a non-degenerate critical manifold. As in 2. 2,

this implies there is a coordinate transformation u r (x, y) such

that these equations, namely

(12) i = U(U) + a U(u, a),

transform to

x Xq (x,y) + a2X(x,y, or)
(13) )

y Yt(x)y + Xq(x,y) + a (x,y,

where Xq and Yq have order at least two in y.

-12-



Now, in general, the coordinate transformation u -- + (z)

transforms (12) to:

(14) z= (do) Uo(u(z)) + a do " I U(u, a)

where d 9 is the Jacobean matrix of the transformation. Therefore, if

z = (x, y) and g is the transformation u -- # (x, y) above, then

(dt Uo(U(Z)) + ado-U(u, a) Is the rghthand sideof (13).

Applying the transformation u = e (z) to (11)) one computes:

ud.?(z')

U d 9 (z ) + do (z") and, from (11),
(15) ) -ocd-(z') = d (z') + do (z") + Uo(u(z)) + o 2 U(u(z), a), or

Z -CC - (do) UO (u(z) -a (do) U(u(z), a) - do- (d? (z ' )).

Nowlet z= (x, ay) (rather than (x,y)). Then the terms

-do "I Uo(u(Z))- a 2 d -U(u(z), a) take the form (from the right hand

side of (13) with the noted modification):

Xq (x, ay) + a X(x, Gy, a)
(16)

Y2 (x) ay + Y (x, cy) + CY(x, ay, a)
f q

In particular, excepting YI (x) ay, these terms are of order at least two

in a and, when y= 0, the x-term reduces to a 2X(x, 0, 0) ; this

is, in the notation of Theorem 2. 3 C, X s (x).

On introducing e and 1 (corresponding to x and y) by

(a , o o) = z', the last equation of (14) now leads to the system:

-13-
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x =

y T)
(17) -,1"

= -c - Xq (x, ay) + GX(x, ay, a)- a (,,)

T= -acTI - Y I(x)y+ &'iq (X, ay) + GY(x, ay, a) - a (, I)

where d 9 1 (d Z ( ' l z')) is decomposed into (D , T) and (jI )

in accordance with the decomposition a- z' = (D, ). ( and

also depend on x and y of course; they are quadratic in e and 1 .)

B. Theorem: Suppose the equations (1Z) for the spatially

independent solutions of (10), that is of au/at = a u/a + Uo (U) + a U(u, C),

admit a non-degenerate critical manifold, M , when a = 0. Then the

same is true of the equations for travelling waves if they are appropriately

scaled (as they are above).

More specifically, when a = 0 , the equations (17) admit the critical

manifold f = ((x, y, y, )Y= T1 = 0]. Coordinates on l are

given by (x, ) and the limit equations on l are given by:

(18) = -c - xs(x) -( 0)

where the limit equations on rR are:

(19) x = X (x).

-14-
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The critical manifold, ?, is non-degenerate if M is, and is

hyperbolic if rt is attracting. (If the linearized equations for M

have a real positive eigenvalue, l is not hyperbolic). If lb has

n stable directions, l has n unstable ones.

Proof: On setting a = y = Tj = 0, the right hand side of (17) vanishes

(recall that X and Y are of order 2 in their second variable
-l q q

so - Xq(X, ay) and a- Y (x, oy) are oforderone in a). Theq q
relevant portion of the matrix for the linearized equations is

(20) ( (y,) Y(x) 0

It is non-degenerate if Y (x) is and it's eigenvalues are the square

roots of those of Y (x).

Setting y= TI = 0 and taking the terms of order a in the

x, equations gives (18). The equations (19 ) come on taking the

lowest order terms in the corresponding equations for (12). These are
2of order a

-15-



3. Some Equations from Mathematical Population Genetics.

2.1 The Growth Equations.

As we consider continuous-time models of natural selection at a single

gene locus. Equation (21) and equations analogous, in varying degrees, to

those in Sections 3. 1 B, C can be found in a number of works; see, for example,

[4-8.
There is supposed to be a population with a total of T individuals which

is classified according to which two of n possible "alleles" appear at a particular

gene locus. The number of alleles of type Ai is 2Ni• and u. (= u ) is the
Sii Ji

number of ordered A A j  genotypes. Consequently, N1 = u and

T = itNi = EijUtjo

The growth equations are assumed to have the form:

(21)J = P1T1 NtNj " 6 UlI + 9gij

where .8 and 6 can be taken to be (positive) functions of u and

gj is some function of u (frequently a constant multiple of uj ).

In particular, the birth rate, PT N NJ .of the u t j types is proportional

to the product of the numbers of individuals with the 1 th and Jth alleles

(respectively). This is the "random mating" hypothesis. The (essential)

restriction that /3 and the exponential death rate, 6, do not vary

from equation to equation corresponds to an assumption that differences in

fertility and survival ability, accounted for in the giJ terms, are small

enough to be treated as a perturbation, hence, the parameter e • These same

terms may account for small deviations from random mating and for the systematic

introduction into the population, through mutation or otherwise, of small numbers

-16-



of the various genotypes.

B. Random Mating and the Hardy-Weinberg Surface.

In view of the random mating hypothesis it is easy to guess that
= -l

(if e = 0) the population might tend to a state where u = T-1 N1 N)

(the alleles should be independently distributed). This suggests introducing

the functions
=T - 1

(2Z) hi N i N - ul 1 .

Writing u for uij etc. and p for (3-6 (the effective

exponential growth rate) the equations become:

(23) = pu + Ph+ eg.

The derivative of h along solutions of this equation is

= pdh(u) + fldh(h) + edh(g). Since h is homogeneous of

degree 1, the first term on the right is just ph. Also, since h ij= 0,

Ni = 2 1 uij and T = z Nj do not change under displacements in the

h direction; therefore dh(h) = dh(-u,1 ) = -h

Recalling that p - /3 - 6 , this gives:

(24) h -Bh+ sdh(g).

Of course the death rate, 6, is positive, so if e = 0 h tends to

zero exponentially.

The surface defined by h = 0 is called here the Hardy-Weinberg surface.

It is n-dimensional and coordinates on it are supplied by the vector

N (N 1 .. N n). In fact, if denotes the setof (n - n) h

-17-



with i/ J, then when T/ 0 the transformation u-4 (N, h ) is

well defined and invertible and has Jacobean one.

Namely, from the definition (22), hij - 1 Ni N - uij

follows that uij = T 1 N Ni  - hij so that N and h determine

the uij with i / J. Then from N i  Z Z u ij one can determine

uti •

To compute the Jacobean, observe that d N 1 A... A dNn AdhiJ

must be the same as dN 1 A... A dNn Aduij since hij and

uij differ by a function of the N's . Then from Ni = T, uij it

follows that dN 1 A... A dN n A (il/j duij =/\ f, j duij since

the terms in Ni  of the form d u with i / j already appear in

the product A j du I. The results follows.

C. Critical Manifolds.

On this Hardy-Weinberg surface, the equations (with e = 0) are

just u = p u . Therefore the zero' s of the effective growth rate, p ,

provide critical points. The growth rate is obviously positive for some

values of u, and is negative if u is so large that the environment

can not support the total population. Therefore the Hardy-Weinberg surface must

be separated by a set of points where p = 0. This set is assumed to be a

manifold, and is therefore an n-i dirrensional one.

-18-



It has already been seen (from (24)) that (when e= 0), this

manifold is attracting in the n (n - 1)/2 independent directions corresponding

to the h i with I t J. The situation in the remaining direction depends

on the derivative of p.

An easy case to treat is that where p depends only on the total

population, T, and has a zero at some critical value To . Then part

of the critical manifold, th , is the set fuj h1 1 = 0; T = TO )

Coordinates in this manifold are supplied by the gene frequencies:

(25) P = Nt/T

Now define coordinates P, and t by:

P = (Pip 0' P n )

(26)
t = T -T 0

and define Gi, G, the constant ?, and the function r(t)

(of order two in t as t 0- ) by:

G= Gi

(27) X -[p(To+t)(T
0 +t)] (TO) and

r(t) = p(T0 +t)(T o +t) + xt.

Then the equations (21) assume the form:

-19-
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1 -- s(T + t) ' [G i -GP i] 

(28) t = -Xt + r(t) + eG

h -Sh+ edh(g).

To see this add (ZI) over j to get Ni = pN + eGi and then over i

to get T = pT + eG. Then P (T N) =eT [G i - GP] as

required. The equation for t comes from (Z6) and (27) with

t T = p(T) T + e G. That for h comes from (24) . The equations

for h are redundant of course and h should be interpreted as the

h ij with i / J, i.e. ii. Observe that the equations (28) have

the form of ( 5) with P replacing x and (t,i ) replacing y .

The analogue of Y is a diagonal matrix with a - X on the diagonal

and remaining diagonal entries equal to -6 * The analogue of X isq

zero and that of Yq is r (t) .

It will be assumed that X > 0 so this critical manifold is attracting.

The limit equations on the critical manifold tr -P, t, I t = 1 = 0]

are given by:

(29) Pi = (Gi" GPi)/T0"

With appropriate choice of g ij these are the well-known Fisher equations.

D. The Travelling wave equation.

The travelling wave equations associated to (23) are (defining v

by the equation):
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U =V

(30) U

v = -ocv -pu- h- a'g g

where s has been replaced by az and the wave velocity is equal to

cc.

The equations in the coordinates (P, t, h) and their derivatives

could be derived from the general form (17) or, since they are the only ones

-1Irequired, those for P and Q= a P can be computed directly as follows.

Defining t' T' E i to be o w there

follows v C cw - pT - aG. Then
a = ii v'j

Ni = (T Pi)' = aw P + aTQi Itthen follows that

Ni = aw Pi + Z aow Qi + aTQi • Rearranging and using the above

expression for a w' gives Qi= (aT l[ Ni + a2 cwP1 + pTP1 +

a 2GPi - Za 2 wQi]

Now using I vi = Ni and adding the second equation of (30) over

j gives NJ' acN i - pTe i - a Gi . Using N'i = awPi + aTQi
It 2 2 2

there results N i =- cwPi + a cTQi - pTP i - a Gi -

Substituting this last expression for N' into the preceding equation

for Qi, there follows: Q' (0)' [T a'cTQi - ° G + a Gp Z wQ ] .

Thus the equations for P and Q are:

I= aQ1

(31) Q' = -acQi aT' [Gi GP] - ZaT' wQi

-21-
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These are the analogues of the equations for x and £ in (18).

However, it should be noted that there should really be only 2 n - 2

equations in (31) since Z 1 and consequently 2 i Qi 0.

The critical manifold for the travelling wave equations (23 ) with

e= 0 is the manifold of points where t = 0 (T= T 0 ), w= 0 and

h =h = 0. The limiting equations on this manifold are obtained by setting

these variables equal to zero in (31) and taking the first order terms in a.

This gives:

P = Qi

('32) (3ZOi -cQ - (Gt - GPi)/To

Now the critical manifold for (28) is obviously attracting since X > 0

with n (n - 1)/2 + 1 stable directions assuming uij = uj i " By theorem

2.4 B the corresponding one for (30) is hyperbolic with n (n - I )/2 + 1

unstable directions. Therefore (by 2.3 C) blocks for (32) carry over

to blocks for ( 3 0).

In the following example, this will be used to prove the existence of a

travelling wave for (30) from the (known) existence of such a wave for (32),

3.2 An Example.

=61. 2
A. The easiest example is that when n = 2 and g. =. uij + T P.P.

ij 13 j 13

(the first term representing a perturbation of the death rate, and the second a

perturbation to the birth rate). Since P1 = I - P2 and 1 = -Q 2 , only

one pair of the equations in (3. 2) is needed.

-22-
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On the Hardy-Weinberg surface, ui1 = TPiPJ and on the critical manifold

T TO . Therefore setting 6j & 1 + 2 and taking 12 = 621 , we have

G)T =P2 c 2 l
(G 1 -GPI)/T 0 = P1 612 P 2 - 611P, - 2 6 12P P Z - '22P21 "

This last expression is a function of PI alone, since P2 = 1-PI. It

vanishes when P1 = 0 or 1, and when the 6ij are constant, it is cubic

with third root

a = (622 - 612)/(611+2612+ 622 ) .

The quantities 1 + &ij are called the fitnesses of the three genotypes. The

case we shall be especially interested in is the "underdominant" case

611 612, 622 612

Normalizing the 65j so that 6 1 0 and dropping the subscript, (31)

(for PIP Q1 ) takes the form

dP/dT = Q
(33)

dQ/dr = -cQ - P(l-P)(P-a)

with A= 622/(611 +622)

B. These equations have been treated by several authors (e. g. [9-131 ).

Our aim is to use Theorem 2. 3C to "lift" the results to the corresponding

equation for the uij , or, more specifically, to prove:

Theorem. Let u = (Ui) and v = (Vii) with 1, J 1, 2

Le-t Ni = z iUij and T = ij uij" Let p = p(T) and

/ =36(T) be differentiable functions of T with p and p - p

both positive when T is positive. Let h (hlj) = (T " 1 NiN j - u )

-23-
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I

and let g gij be functions of u which reduce to the form 6 ij(T) uij

when h = 0. Let T and p be real parameters.

Assume that for some To > 0, p(T 0 ) = 0 and [dp/dT] (TO) < 0

Also assume that 61 2 (T 0 ) = 62 1(T 0 ) = 0 and 611 (T 0) > 6z2(T0) > 0

(under dominance). Then there is a o 0 > 0 such that to each a < c 0

there corresponds a c < 0 such that if c = c (a), the equations

du/d- v
3s4) z

dv/dr = -cv - Pu - ph - a g

admit a non-constant solution (u (,r), v.( )) which tends to

distinct rest points as T tends to minus or plus infinity. It

Onthis solution T = T + 0( ) and the limits of u at minus

and plus infinity (respectively) are given to order a by:

(35) 0 and (To 0)

With P T "1  (U11 + u12) the function P,( ) corresponding

to the above solution converges as a - 0 to a solution of the equation

(33) which tends to the rest points (0, 0) and (1, 0) as r tends

to minus or plus infinity respectively. (Of course c (a) must also

converge to a value of c for which such a solution exists).

Proof: The proof of this theorem could be phrased in terms of the "shooting"

method since it is quite easy to construct the necessary blocks explicitly.

-24-
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In fact, referring to (33) and the function H given in 3. 3A,

for all negative values of c the set

B -(P,Q)- P -- 1 + e; H(a, 0) + ss H(P, Q) H(1, 0) +

is a block; it corresponds to the shaded region in Figure 1. It is easily

Q seen that for c close to zero the

branch of the unstable manifold of the rest

point (0, 0) leaves the block as

P indicated by the solid curve, and for

c large it leaves as indicated by the

dashed curve. It follows that for some
value of c it goes to the rest point (1, 0).

Fig. I

Now using Theorem Z. 3 C, this block corresponds to one for (3.4)

and a similar "shooting argument" might be constructed.

Instead, the proof here will be based on the general facts about the

Morse index of isolated invariant sets; this is to illustrate the use of this machinery

and to set things up for a treatment of more complicated examples. Of course the same

features enter the proof, but the index approach is probably easier to implement in

general, particularly when it is difficult to construct blocks (or Wazewski sets,

or local Liapounov functions... ) explicitly. On the other hand, the index argument

rests on a fairly large body of abstract definitions and theorems. The following

description of which (without proofs) is already longer than a direct proof for

this example would be. In 3. 3 A, B and C and 3.4 B and C remarks

pertinent to the example are more. In 3.5 a general theorem for travelling

wave equations is given. Finally in 3. 6 it is shown how the machinery works

in the example.
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3.3 Facts about (33).

A. lemma If c < 0 the function H(P, Q)= Q2 /Z

P4/4 + (1 + a) P3/3 - a p2 / Z is strictly increasing on non-constant

solutions of (33). Consequently every bounded solution tends to a rest

point in forward and backward time and the two rest points so determined

are distinct.

There are three rest points for the equation; namely, (a, 0), (0, 0)

and (1, 0). The values of H at these three points are (respectively)
3

(a - 2)/l2, 0 and (1 - Za )/lZ and increase strictly in the order

givenwhen 0 < a < 1/Z (as is assumed).

The set of bounded solutions is compact and in fact for all c is

contained in the set (P, Q) 10 s P z 1; a 3(a - 2)/IZ_: H-t (I- Za)/12]

Proof: In terms of H, the second equation of (3 3 ) is

dQ/d-T = -cQ - aH/aP. This makes it easy to see that, on solution,

dH/ d T = - cQ and from there that H is strictly decreasing on non-

constant solutions. The statement concerning the asymptotic behavior of the

solutions now follows from well-known general facts about gradient-like equations

(e.g. see [1] , Ch. I, §6 p. 12 et seq.).
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Since the equation is gradient-like with respect to H, the easily

computed values of H at the critical points provide bounds for H on the

set of bounded solutions. The bounds on P come from the fact that critical

points of P(T) are strict maxima if P < 0 and strict minima if P > 1

(cf. [1], Ch. II §4.3 C p. 31 fora more general result).

B. Lemma There is a constant k such that if Icl s k

then the rest point (1,0) is a component of the set of bounded solutions

of (35).

Proof The point is obviously a component of the set of bounded solutions

when c = 0 (when H is constant on solutions and the set of bounded

solutions is easily pictured). Because it is compact, the set of bounded

solutions depends upper semi-continuously on c. Because (1, 0) is

a hyperbolic rest point no new bounded solutions are created near this point

when c changes a little. Therefore, it remains a component for I c I small.

C. Lemma The equation

(36) P = P(l-P)(P-a)

is gradient-like with respect to the function P 4/4 - (1 + a) P 3/3 + a? /Z

and has critical points at 0, a and 1- a.

For 0 < e < a, the interval [a- s, 1 + e] is an isolating

block with exit set (a - e ]. It contains the two rest points a and 1.

Proof: Trivial.

-27-

...................--..-



3.4 Interpretation of the previous Lemmas as statements about Morse
decompositions.

A. To conclude the proof the notions of attractors, Morse

decompositions, the homotopy index and connection maps are used. An attractor

relative to a compact invariant set, S, means a compact invariant subset

which is the cw -limit set of a neighborhood of itself (Definition 5. 1, p. 32

Ch. II, [1]). A Morse decomposition, D= (Mi M 2 , ... , Mn), of

S is derived from an increasing sequence = , ... ,An = S of

attractors relative to S; namely, M. is the maximal compact invariant

set in A \AJ_1  (Definition 7.1, p. 40, Ch. I, [I] ) . To each Morse

set M there corresponds an index, h which takes the form of the

homotopy type of a pointed space (Definition 5.1 and 5. 2, pp. 51-52,

Ch. I1, [1] ). To a pair of adjacent Morse sets, M,# Mj+l in a

decomposition there corresponds a connection map, c from h to thej-H
suspension of h (7.2, 7.3 pp. 61-62, Ch. 11, [1] ). Allof these

objects are "stable" under small perturbation (5.3 C, p. 35, Ch. I,

Thm. 1.4 p. 67, Thm. 2.5, p. 70 and Thm. 3.1, p. 72, Ch. IV, [1] ).

The application to the present problem goes as follows.

B. Lemma By Lemma 3.3A with 7.1C, p. 40, Ch. II of

[1], D= ((1,0), (0,0), (a, 0)) is a Morse decomposition of the set

of bounded solutions of (33) for all values of c.

Furthermore, if there is no solution running from (0, 0) to (1, 0)

D = ((0, 0), (1, 0), (a, 0)) is also a Morse decomposition

-28-

WW I . lm



(7.1 C of [1] again). In particular, Lemma 3.3 B says no bounded

solution runs to (1, 0), so D is a Morse decomposition for small

negative c .

Also, Lemma 3. 3 B with Theorem 7. 2 C, p. 6z of [I] implies the

connection map from h( (a, 0)) to the suspension of h ((1, 0 )) is trivial.

C. Lemma By Lemma 3.3 C, D= 0, , a] is a Morse

decomposition of the set of bounded solutions of (36). Since

[a - e, 1+ s] can be deformed to its exit set (a - e] it has index

(cf. [] , bottomof p. 6 and top of p. 7). From (1), 7.2 B

p. 6Z Ch. III of [] , it then follows that the connection map from h (a)

to h(1) Is an isomorphism. Since h(1) = - (cf. middle p. 6,

Ch. I of [1] ) this connection map cannot be trivial.

3.5 Three more abstract theorems.

The idea now is to "lift" the Morse decompositions of 3.4 A and

3.4 B up to the equation (34) using Theorem 2. 3 C or rather its following

consequence (see Definition 3. 2, Ch. III p. 45 of [I] for the definition

of isolated invariant set and isolating neighborhood, and 5. 2, Ch. III, p. 51

for the index).

A . Theorem: Let ta be a critical manifold for the equation

d
(37) u 0 (u, E) + e U(u, e)
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when e = 0, and let S be an isolated invariant set of the limit

equation on fl such that tn is hyperbolic at points of S. Then any

neighborhood of S in u-space contains a compact neighborhood N

such that for small enough a, N is an isolating neighborhood for ( 37).

The corresponding family of isolated invariant sets will be denoted S (e).

If S is contractible in a subset of tn consisting of points at

which rn is hyperbolic, then the index of sets in N is the product of

that of S with a pointed r-sphere where r is the number of eigenvalues

with positive real part of the matrix a U/ a u evaluated at any point of S,

or in other words the number of unstable directions of lb in N.

The family S ( e), will be called an r-fold extension of S.

Proof: This could be played back to Theorem 2. 3C., or argued directly as

follows. Let 1 be a neighborhood of S in u-space. Since lb is

hyperbolic at points of S, there is an isolating neighborhood N, of S

(as an isolated invariant set of the limit equation) in rb n IA such that

M is hyperbolic at points in N . Then for small enough k, the set

N(k) of Theorem 2.3 A is contained in 1U. For small enough e it

can be shown to be an isolating neighborhood for (37) as follows. Suppose

given a solution which stays in N (k) for all time; the thing to be shown

is that this solution does not pass through a boundary point of N(k). Now

by Theorem 2.3 A, it lies within 0(e) of lb. Therefore, if e is

small, it closely follows solutions of the limit equation. Also, if e is
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small enough, the y coordinate of the solution is smaller than k.

Therefore if the solution were to pass through a boundary point of N (k)

It would have to be one whose x-coordlnate is in the boundary of N. Then

the corresponding solution of the limit equation leaves N (because N is

an isolating neighborhood of the limit equation). But then the given solution

would have to follow it out of N (k) which is a contradiction. This

proves N(k) is an isolating neighborhood of (37) if e is small

enough (in [3] there is a substantial generalization of this argument).

To compute the index of S ( e), a block for S is chosen and then,

by Theorem Z.3 C a block for S(e) (a small). If S is contractible

in a subset of M at points in which tn is hyperbolic, then the block

for S (e) can be deformed to the product of the given one for S and a

block for a hyperbolic rest point whose unstable manifold is the number of

elgenvalues with positive real part of a U/a u evaluated at a point of S.

This implies the statement about the index of S (cf. §4, Ch. I of [1] ).

B. Theorem: With the hypothesis of Theorem 3.5 A, suppose

D (MI 000., Mn] is a Morse decomposition of S. Then

D (a) E ( M1 (e), ... , Mn (e) with the Mi (a) the r-fold extensions

of Mi, is a Morse decomposition of S (e) for small enough e

Furthermore the connection maps from h(Mj+l(s) to the suspension of

h(M (e)) are the r-fold suspensions of the corresponding maps for D.
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Proof: This is a straightforward consequence of the definitions and the

preceding theorem.

The next theorem is the result initiating §3, p. 81 of [2] :. It is

included here for completeness and because it can be played back to critical

manifolds as follows.

C. Theorem Let D= (M I , ... , Mn] be a Morse decomposition

of an isolated invariant set S of the equation

(38) f(u).

where u Rr . Then for large c, S and D admit r-fold extensions

to the equation

u = V

(39)
v -cv-f(u)

which are obtained by realizing (3 8 ) as the limit equation for a critical

manifold of a transformed version of (39), namely:

u = Ef(u) + ew

(40)
w w - Cf (u)w f (u)f(u).

This critical manifold has dim (u) unstable directions.

Proof: With s = 0, the equations (40) become u' - 0, w' =-w

and so admit fi = ((u, w) lw = 0] as a critical manifold. The limit

;'The function f (v) Introduced on page 80 of [2 can be taken to be

v(l-v)(v-a) with 0 < a <.
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equation is u' =f (u). Therefore 3.5 A and B apply.

The equation (40) transforms to 39 on setting e = c -2 changing

the time scale by multiplying the right-hand sides by _c, and setting

w = -cv - f (u)

3.* 6 The conclusion of the proof.

Using Theorem 3. 5 B and Lemma 3.* 4 B the Morse decomposition

D = (1, 0), (0, 0), (a, 0)] of the set S of bounded solutions of

(33) extends to a decomposition Dh ( a) of the extension S ( ar) of S

to (34). It is an elementary fact that the extensions of the (non- degenerate)

rest points (1, 0) (0, 0 and (a, 0) are again rest points (as well as

Morse sets). These Morse sets will be denoted respectively by M, ( a),

M ( c) and Ma()

BY 7.10C, p. 40, Ch. II of [1] , so long as there is no solution

running from M (a) to M (a), the ordering of MO (a) and

M 1( ), can belinterchanged so that D O (0 a)' M ( a), Ma (aC) is

also a Morse decomposition of S (a). Theore m 3. 5 B with Le mma 3. 4 B

then implies that, if c is small, the connection map for the pair M, ( a)

M a ( a) is trivial.

Now Lemma 3.40C with Theorem 3. 5 C and then 3. 5 B implies that

for large c, D Is again a Morse decomposition but the connection map

for the pair M1 ( a), Ma"( ) is no longer trivial: it is an isomorphism

between the index of M a (LT) and the suspension of the index of M, ( ).
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The latter is the product of 1 with a pointed one sphere (Theorem 3.5 C)

and then a pointed two sphere (Theorem 3.5 B; cf. Theorem 2. 4 B) the

result is a pointed three sphere, so the isomorphism isn't trivial.

NowTheorem 3.1, p. 72, Ch. IV of [1] implies that

D(a) = M0 (o), M,(u), Ma(a)] cannot bea decomposition for all

C; inviewof 7.1C, p. 40, Ch. Ill of [1], this means there is some

value of c for which there is a solution connecting M0 ( a) and M, ( a),

and this completes the proof of Theorem 3. 2 B except for the limit statements

which are obvious.

3.7 Concluding remarks.

The equations from population genetics seem to be rich in attracting or

hyperbolic critical manifolds: in the case of two loci the "linkage disequilibrium

surface" is such a manifold if there is a positive probability of crossovers

(and no selection). With several loci analogous statements are true ([4]).

In the simplest case of two loci and two alleles, the critical manifold of

the "spatially independent" equations is two dimensional while that for the

travelling waves is four dimensional. Therefore the analysis of an example

is more difficult.

It is not just the increase of dimension that creates difficulty, though.

(In fact, this does not have to be serious per se as the example 3.2 B, p. 73

Ch. IV of [ 1] shows. ) The real difficulty comes because the travelling

wave equations are no longer in a form that makes them automatically gradient-

like (as they must always be in the case of one locus and two alleles no
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matter what the form of the g i is). (Gradient-like equations are

discussed in §6, Ch. I of [1] ).

Because the spatially independent equations always have a gradient form,

the gradient-like character is present for very large c (cf. Lemma 3. 3 C)

but not for small c (cf. Lemmas 3.3 A and 3.3 B where the gradient-like

character with respect to H made the treatment very simple).

Actually, the Laplacian term is also a gradient term and one might

expect the sum of two gradients to be a gradient. The hitch is that the

metric with respect to which the spatially independent equations are a

gradient system is not the usual one (but rather one suited to the simplex).

In [14] the "non-gradient" aspects of a model from Ecology are

circumvented. It is possible that similar methods might be used in special

cases of the equations treated here.
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A generalized Morse index theory is used to study the exist-

ence of travelling wave solutions of a diffusion-reaction system

of equations. The reaction system is assumed to be "close" to one

which admits an attracting manifold of critical points. A scaling

argument is used to see that the equations for travelling waves

of the full system are then close to a system with a normally

hyperbolic manifold of critical points. Of
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20. Abstract continued.

Standard perturbation theorems are already available to
study the behavior of solutions of the "perturbed" system which
lie near the critical manifold in terms of a (derived) system
of "slow" equations on the manifold itself. Here, another such
theorem, dealing with aspects of the system which can be described
in terms of isolated invariant sets, is proved. Specifically,
it states that isolated invariant sets of the slow equations
correspond to isolated invariant sets of the full system, and
that the Morse index of the latter set is an n-fold suspension
of that of the former where n is the number of unstable normal
directions.

Thesetteorems are applied to a standard continuous space-

time natural selection-migration model for a diploid organism
when the selective strength is weak. The selection is assumed
to be determined by a single locus at which the number of avail-
able alleles is arbitrary, and the critical manifolds are found
in this case.

The perturbation theorem is applied to a system with only
two alleles in a situation where the existance of a travelling
wave for the slow equation has long been known. The conclusion
is that the full system also admits a corresponding travelling
wave. The index theory is of use because the travelling wave
itself is part of an isolated invariant set.




